День: 22.05.2020

ЦАРСТВО РАСТЕНИЯЦАРСТВО РАСТЕНИЯ

Материалы для подготовки к ЕГЭ. Онлайн-Справочник по биологии.
РАЗДЕЛ II. МНОГООБРАЗИЕ ЖИВЫХ ОРГАНИЗМОВ. 10. Царство РАСТЕНИЯ

ВСЕ РАЗДЕЛЫ СПРАВОЧНИКА

10. ЦАРСТВО РАСТЕНИЯ

Растения — это эукариотические фотосинтезирующие автотрофные организмы. Царство Растения насчитывает около 500 тыс. видов. Растения являются продуцентами органических веществ и основным источником энергии для других живых организмов. Любые пищевые цепи начинаются с зелёных растений. Они же определяют характер биоценоза, защищают почву от эрозии. Растения служат источником кислорода и оказывают значительное влияние на климат Земли. Человек использует около 1,5 тыс. видов культурных растений как пищевые, технические и лекарственные ресурсы. Продукты питания растительного происхождения обеспечивают организм человека белками, жирами, углеводами и витаминами. Растения вырабатывают фитогормоны (вещества, способные усиливать физиологические процессы) и фитонциды (вещества, способные угнетать рост микроорганизмов или убивать их).

Царству Растения присущ ряд отличительных признаков:

  1. Автотрофный (фототрофный) тип питания. Встречаются также виды с миксотрофным (насекомоядные растения) и гетеротрофным (растения-паразиты) питанием.
  2. Специфические черты в организации растительной клетки: окружена клеточной стенкой, образованной целлюлозой; имеет пластиды; содержит крупные вакуоли; основным запасающим веществом является крахмал.
  3. Неподвижный, в основном прикреплённый, образ жизни. Поэтому растения не имеют костей, мышечной и нервной систем. Движения растений связаны с перемещением их частей тела: ростовые движения корней и стеблей, движение листьев в зависимости от времени суток и освещённости и др.
  4. Рост возможен в течение всей жизни и осуществляется только в определённых участках тела. Тело большинства растений в той или иной степени ветвится.
  5. Чередование гаплоидной (гаметофит) и диплоидной (спорофит) фаз развития.
  6. Практически нет специальных экскреторных органов.
  7. Расселение происходит спорами и семенами, находящимися в состоянии покоя.

Перечисленные отличия растений от животных не являются абсолютными. Черты животной организации часто встречаются у низших растений, которые соответствуют ранним этапам эволюционного развития. Например, способность и к автотрофному, и к гетеротрофному питанию (эвглена зелёная). Более высоко организованные растения достаточно чётко отличаются от животных.

Растения делят на низшие и высшие. У низших растений тело (слоевище, или таллом) не дифференцировано на ткани и органы. К ним относятся Красные водоросли (Багрянки), Настоящие водоросли и Лишайники. У высших растений тело разделено на органы (корень, стебель, лист), образованные дифференцированными тканями. К высшим растениям относятся Моховидные, Плауновидные, Хвощевидные, Папоротниковидные, Голосеменные и Покрытосеменные (Цветковые). Четыре первых отдела расселяются при помощи спор {споровые), два последних — при помощи семян {семенные).

Размножение растений.

Для всех высших растений характерно чередование в жизненном цикле полового и бесполого размножения и связанное с этим чередование поколений (фаз развития) — гаплоидной (n) (гаметофит) и диплоидной (2n) (спорофит). На спорофите возникают мешковидные образования — спорангии (органы бесполого размножения), в которых в результате спорогенеза, сопровождающегося мейотическим делением, формируются таилоидные споры. Из спор развивается гаметофит. На нём формируются особые половые структуры — гаметангии (органы полового размножения), в которых образуются гаметы.

Мужские половые органы, где формируются сперматозоиды, называются антеридиями, женские половые органы, где формируются яйцеклетки, называются архегониями. Если на гаметофите развиваются и архегонии, и антеридии, то он называется обоеполым, если только антеридии, то мужским, если только архегонии, то женским. При слиянии гамет образуется зигота. Из зиготы развивается спорофит.

Эволюция растений шла в направлении увеличения размеров бесполого поколения (спорофита) и редукции полового поколения (гаметофита). У подавляющего большинства высших растений (за исключением моховидных) в жизненном цикле преобладает спорофитная фаза (рис. 10.1).

10.1. ПОДЦАРСТВО НИЗШИЕ РАСТЕНИЯ. ВОДОРОСЛИ

Строение и жизнедеятельность водорослей.

Водоросли — это фотосинтезирующие автотрофные эукариотические организмы. Насчитывается, около 30 тыс. видов различных водорослей. Выделяют отделы Зелёные, Красные, Бурые водоросли и др. Водоросли бывают одноклеточные, многоклеточные и колониальные.

Тело многоклеточных водорослей (таллом) состоит из сходных клеток и не разделено на органы и ткани. Формы таллома очень разнообразны: монадная, амёбоидная, нитчатая, пластинчатая и др. Хлоропласта водорослей называются хроматофорами. У многих подвижных водорослей имеется светочувствительный глазок {стигма), благодаря чему эти водоросли обладают фототаксисом — способностью к движению по направлению к свету.

Водоросли обитают главным образом в воде, однако большое число видов поселяется на суше во влажных местах обитания (на поверхности почвы, камнях, коре деревьев).

Размножение водорослей.

Водоросли могут размножаться бесполым и половым путём. К бесполому относится вегетативное размножение (деление таллома на части у многоклеточных, деление клеток надвое у одноклеточных, распадение колоний у колониальных форм) и спорообразование (образование в спорангиях подвижных или неподвижных спор). Половое размножение заключается в формировании гамет и их последующем слиянии с образованием зиготы, а также просто слиянии двух одноклеточных водорослей друг с другом либо посредством конъюгации. При половом размножении в жизненном цикле зелёных водорослей преобладает гаметофит, бурых — спорофит (рис. 10.2—10.3).

Сравнительная характеристика некоторых отделов водорослей представлена в табл. 10.1.

Значение водорослей.

Водоросли являются важным компонентом водного сообщества. В водах Мирового океана водоросли являются основными продуцентами органических веществ. Кроме того, они выделяют кислород, необходимый для дыхания животным и растениям. Водоросли, обитающие на поверхности почвы, участвуют в почвообразовании. Водоросли сыграли огромную роль в истории Земли, обогатив атмосферу кислородом. Широко используются водоросли и человеком: в пищу и на корм скоту (богаты витаминами, солями йода и брома), для получения агар-агара и других веществ и т. д.

 

10.2. ТКАНИ И ОРГАНЫ ВЫСШИХ РАСТЕНИЙ

К высшим растениям относятся моховидные, плауновидные, хвощевидные, папоротниковидные, голосеменные и покрытосеменные (цветковые). В процессе эволюции в качестве приспособления к жизни в наземно-воздушной среде у растений произошла дифференциация клеток на ткани и формирование органов.

10.2.1. Ткани

Ткань — совокупность клеток, сходных по строению, происхождению и выполняющих одинаковые функции. У растений различают следующие ткани: образовательные (меристемы), покровные, основные, механические, проводящие, выделительные (табл. 10.2). Ткани растений делят на временные (меристемы) и постоянные (все остальные ткани).

10.2.2. Вегетативные органы

Орган — часть организма, имеющая определённую форму и строение, состоящая из нескольких тканей, занимающая определённое место в организме и выполняющая специфическую функцию или функции. У растений выделяют следующие органы (табл. 10.3, рис. 10.4).

10.2.2.1. Корень

Корень — вегетативный подземный орган растения. Он имеет радиальную симметрию, не несёт на себе листья, обладает способностью ветвиться, характеризуется неограниченным ростом. Функции корня: закрепление растения в почве, поглощение воды и минеральных веществ, синтез гормонов и ферментов, выделение продуктов метаболизма, запасание воды и питательных веществ.

Типы корневых систем. Совокупность всех корней одного растения называют корневой системой. Различают два типа корневых систем (у семенных): стержневую и мочковатую (табл. 10.4, рис. 10.5).

Придаточные корни могут образовываться и у многих двудольных растений на стеблях, засыпанных землёй, на ползучих и подземных стеблях. Эту способность используют для искусственного вегетативного размножения черенками.

Зоны корня. На продольном разрезе различают четыре основные зоны корня: деления, роста (растяжения), всасывания и проведения (табл.10.5, рис.10.6)

Внутреннее строение. На поперечном срезе корня можно выделить ризодерму, первичную кору из клеток паренхимы и центральный цилиндр, который включает эндодерму, перицикл (образовательная ткань, формирующая боковые корни), первичную флоэму, первичную ксилему и сердцевину. При одревеснении (вторичный рост) ризодерма, первичная кора и эндодерма замещаются перидермой, а камбий образует вторичную флоэму (луб) и вторичную ксилему (древесина). Вода поступает в клетки корня пассивно, в силу разности осмотического давления почвенного раствора и клеточного сока, а минеральные вещества — в результате активного всасывания, требующего затрат энергии на преодоление градиента концентрации. Движение раствора вверх по сосудам корня и стебля обеспечивается корневым давлением, создаваемым всасывающей силой всех корневых волосков, и испарением воды с поверхности листьев (транспирацией).

Особенности корня. В связи с изменением функций корня происходит его видоизменение (табл. 10.6). Образование корнеплодов и корневых клубней связано с накоплением в корне запасных веществ и воды.

Корни многих растений образуют с почвенными организмами симбиозы. Микориза (грибокорень) представляет собой симбиоз высшего растения и гриба. Клубеньки на корнях образуются у бобовых растений в результате их симбиоза с азотфиксирующими микроорганизмами, которые способны усваивать молекулярный азот атмосферы.

10.2.2.2. Стебель

Стебель — вегетативный орган растения, несущий листья и почки. Имеет радиальное строение, может ветвиться, характеризуется неограниченным верхушечным ростом. В ряде случаев стебли могут фотосинтезировать. Функции стебля: проводящая, или транспортная (соединяет два полюса питания растения — корни и листья), опорная (выносит листья к свету), запасающая (служит для накопления питательных веществ и воды), является органом вегетативного размножения.

Стебель с листьями и почками, развившийся из почки в течение одного вегетационного периода, называют побегом (рис. 10.7). Побег состоит из повторяющихся элементов — узлов и междоузлий. Узел — участок стебля, от которого отходит лист (листья). Междоузлие — часть стебля между соседними узлами. Пазуха листа — угол между листом и находящимся выше междоузлием.

Почка — зачаточный, ещё не развившийся побег. Выделяют почки разных типов (табл. 10.7, рис. 10.8).

Рост стебля в длину и ветвление осуществляется деятельностью верхушечной и боковых почек. У ряда растений (бамбук, злаковые) наряду с верхушечным ростом долгое время активно растут основания междоузлий побега (вставочный рост). Для увеличения площади соприкосновения со средой главный побег, выросший из почечки зародыша семени, образует новые побеги, обеспечивающие ветвление стебля. У ряда растений тропиков и субтропиков встречаются неветвящиеся побеги. Различают следующие типы ветвления: дихотомическое, моноподиальное и симподиальное (табл. 10.8; рис. 10.9).

Формы побегов. По характеру расположения в пространстве побеги (стебли) делят на прямостоячие (кукуруза), стелющиеся (земляника), вьющиеся (вьюнок), цепляющиеся (горох). В зависимости от степени одревеснения стебли делятся на одревесневшие (деревья и кустарники) и травянистые (травы). Травянистые формы произошли от древесных.

Внутреннее строение. У семенных растений первичное строение (не одревесневшее) стебля таково; снаружи эпидерма, под ней первичная кора, образованная паренхимой, и проводящие пучки, в которых кнаружи располагается флоэма, а ближе к центру — ксилема. Центральная часть (сердцевина) образована паренхимой.

При одревеснении (рис. 10.10) между флоэмой и ксилемой закладывается камбий (образовательная ткань), образующий единое кольцо. В результате его деятельности формируются вторичная флоэма (луб) и вторичная ксилема (древесина), которой всегда больше. Параллельно с этим первичный покров (эпидерма) замещается вторичным — перидермой, состоящей из пробкового камбия, формирующего кнаружи пробку, вовнутрь — пробковую кожицу. В разные времена года клетки растения растут в различной степени. В результате на поперечном срезе стебля можно обнаружить годичные кольца.

Годичное кольцо прироста — слой клеток древесины, образовавшихся в тёплое время года. Мелкие осенние клетки отличаются от крупных весенних клеток следующего года. По числу годовых колец можно определить возраст дерева.

Видоизменения побега могут выполнять различные функции: запасающую и функцию вегетативного размножения (клубни, корневище, луковица), защитную (колючки), служить органом прикрепления (усики) и т.д. (табл. 10.9).

10.2.2.3. Лист

Лист — вегетативный орган растения, располагающийся на стебле. Обладает ограниченным ростом. Функции листьев: фотосинтез, газообмен и транспирация (испарение влаги).

Внешнее строение листа. Лист состоит из листовой пластинки и черешка. Черешок служит для лучшего расположения листа на стебле по отношению к свету. Листья с черешками называют черешковыми, без черешка — сидячими. Нижняя часть листа, соединяющаяся со стеблем, называется основанием листа. У некоторых растений основание листа охватывает стебель в виде трубки, образуя влагалище. У многих растений в основании листа на стебле образуются выросты — прилистники.

Разнообразие листьев. Листья растений разнообразны по размерам, форме и числу листовых пластинок, расположению их на стебле, жилкованию и т. д.

По числу листовых пластинок листья бывают простые и сложные.

Простые листья состоят из одной листовой пластинки и черешка, сложные листья имеют несколько листовых пластинок на одном черешке. Простые листья могут быть цельными и рассечёнными (листовая пластинка рассечена). Сложные листья делятся на тройчато- и пальчатосложные (несколько листовых пластинок прикреплены к одной точке) и парно- и непарноперистосложные (несколько листовых пластинок прикрепляются по всей длине черешка).

По форме листовой пластинки различают листья округлые, ланцетовидные, овальные, игольчатые, стреловидные и др. (рис. 10.12).

По форме края пластинки листья делят на цельнокрайние, зубчатые, выемчатые и др. (рис. 10.13).

Жилкование листа (разветвления проводящей системы) бывает сетчатое, перистое, дуговое, параллельное и др. (рис. 10.14).

Распределение листьев на стебле может быть очередным (в узле от стебля отходит один лист), супротивным (в узле находятся два листа, располагающиеся друг против друга) и мутовчатым (от узла отходят три листа и более) (рис. 10.15).

Листовая пластинка у однодольных обычно цельная, у двудольных — цельная или изрезанная. Жилкование у однодольных в основном дуговое или параллельное, у двудольных — перистое или сетчатое.

Расположение листьев на растении, их размеры связаны с максимально эффективным использованием солнечных лучей.

Внутреннее строение листа. Сверху лист образован эпидермой верхней поверхности (рис. 10.16). Она покрыта кутикулой — слоем воскоподобного вещества. Под эпидермой располагается столбчатая ассимиляционная паренхима с плотно примыкающими друг к другу клетками; они узкие и длинные, располагаются перпендикулярно поверхности листа. Ниже залегает губчатая ассимиляционная паренхима с беспорядочно расположенными клетками округлой или извилистой формы и большими межклетниками (пространством между клетками). И та и другая паренхима являются фотосинтезирующими. Нижняя поверхность листа представлена эпидермой нижней поверхности и содержит множество устьиц. Жилки листа образованы клетками проводящих тканей ксилемы и флоэмы и механической ткани, придающей листу прочность. В верхней части жилки расположены сосуды ксилемы, в нижней — флоэма.

Испарение воды и газообмен. На нижней поверхности листа располагается множество устьиц, которые обеспечивают транспирацию и газообмен. Каждое устьице (рис. 10.17) состоит из двух замыкающих бобовидных клеток, между которыми находится устьичная щель.

При высоком тургорном давлении замыкающие клетки расправлены и устьице раскрыто, при низком давлении устьице закрывается. Так осуществляется регуляция интенсивности транспирации (испарения воды листом). Транспирация обеспечивает продвижение воды от корня по стеблю к листьям и охлаждение поверхности растения.

Помимо функции испарения воды, устьица обеспечивают поглощение растениями углекислого газа и выделение кислорода при фотосинтезе, а также поглощение кислорода и выделение углекислого газа при дыхании. Замыкающие клетки устьиц содержат хлоропласта, и при освещении в них начинается фотосинтез, продукты которого приводят к повышению осмотического давления. Вследствие притока воды стенки этих клеток растягиваются и устичная щель раскрывается. Так осуществляется регуляция газообмена.

Таким образом, в темноте и в жаркую погоду устьица закрываются.

Видоизменения листьев. В процессе приспособления к условиям окружающей среды листья, помимо основных, приобретают дополнительные функции (табл. 10.10).

Листопад — это приспособление растений к уменьшению испарения воды осенью и зимой. У листопадных растений (липа, берёза и др.) листья живут только один вегетационный сезон, у вечнозелёных (ель, сосна и др.) — дольше и сменяются постепенно. В старых листьях накапливаются не нужные растениям вещества (кремнезём и др.), хлорофилл разрушается.

10.2.3. Генеративные органы растений

10.2.3.1. Цветок

Цветок — орган семенного размножения покрытосеменных растений (рис. 10.18). Цветок представляет собой видоизменённый, укороченный и ограниченный в росте побег. Развитие цветка завершается образованием плода с семенами. Функция цветка — половое размножение.

Строение цветка. Цветок заканчивает собой стебель (главный или боковые). Он соединён со стеблем цветоножкой. Если цветоножка сильно укорочена или отсутствует, цветок называют сидячим. Цветоножка переходит в цветоложе, на котором располагаются все части цветка. В центре цветка находится пестик (или несколько пестиков). Он состоит из рыльца, столбика и завязи. В завязи имеется полость, где находится семяпочка (семязачаток, мегаспорангий). Закрытое положение семяпочки в завязи отличает покрытосеменные растения от голосеменных, у которых семяпочки лежат открыто. Пестик образован одним или несколькими сросшимися плодолистиками (видоизменёнными листьями). Совокупность плодолистиков составляет гинецей (женская часть цветка). Пестик окружён тычинками, в которых различают тычиночную нить и пыльник. Пыльник состоит из двух половинок, каждая из которых включает по два пыльцевых мешка (микроспорангии), в которых образуется пыльца (микроспоры). Совокупность всех тычинок составляет андроцей (мужская часть цветка). Тычинки и пестик окружены околоцветником, который может быть простым и двойным. Простой околоцветник состоит из однородных элементов (цветки тюльпана). Двойной околоцветник состоит из венчика, образованного ярко окрашенными лепестками, и чашечки, образованной зелёными чашелистиками. Кроме того, цветки некоторых растений имеют особые железы — нектарники, которые образуют нектар.

В зависимости от типа симметрии выделяют актиноморфные (лучевая симметрия), зигоморфные (двусторонняя или билатеральная симметрия) и асимметричные цветки.

Обоеполые цветки имеют и тычинки, и пестики. Однополые цветки имеют только тычинки или только пестики. Они образуются в результате редукции андроцея или гинецея. Однодомные (обоеполые) растения — растения, у которых мужские и женские цветы находятся на одной особи (кукуруза, берёза, тыквенные и др.). Двудомные (однополые) растения — растения, у которых мужские и женские цветы находятся на разных особях (тополь, ива, осина и др.).

Соцветия. У одних растений цветки крупные и располагаются одиночно (тюльпан), у других — относительно мелкие и собраны в различные соцветия. Соцветие — часть растения, несущая группировки отдельно расположенных цветков.

Соцветия бывают простые и сложные (табл. 10.11, рис. 10.19). У простых соцветий на главной оси расположены цветки, у сложных — простые соцветия.

Биологическое значение соцветий состоит в повышении вероятности опыления. Мелкие цветки, собранные в соцветие, хорошо заметны для насекомых, что способствует их опылению. У ветроопыляемых растений соцветия находятся обычно на концах стеблей и не прикрыты листьями, что облегчает отдачу и улавливание пыльцы, переносимой воздушными потоками.

10.2.3.2. Опыление и оплодотворение у цветковых

Опыление — процесс переноса пыльцы с тычинок на рыльце пестика. Пыльцевое зерно является мужской спорой, а семязачаток в завязи пестика — женской спорой.

Различают самоопыление и перекрёстное опыление (табл. 10.12).

Оплодотворение. Оплодотворению предшествует образование мужского и женского гаметофитов. Женский гаметофит формируется внутри завязи пестика. В одной из диплоидных клеток семязачатка (мегаспорангия) в результате мейоза образуются четыре гаплоидные мегаспоры. Три из них отмирают, а одна проходит три митотических деления, в результате чего эта клетка содержит восемь гаплоидных ядер. Это и есть женский гаметофит, или зародышевый мешок. В зрелом женском гаметофите образуются яйцеклетка, диплоидная центральная клетка и ряд дополнительных клеток. Мужской гаметофит образуется в пыльниках тычинок. В пыльцевых мешках (микроспорангиях) материнские клетки спор делятся мейозом, в результате чего из каждой образуются четыре гаплоидные микроспоры. Сформировавшаяся микроспора имеет оболочку и ядро. Ядро затем делится митозом с образованием генеративной и вегетативной клеток. Это и есть мужской гаметофит. Генеративная клетка вскоре ещё раз делится митозом и формирует два спермия. Таким образом, пыльцевое зерно содержит вегетативную клетку и два спермия.

После попадания пыльцевого зерна на рыльце пестика оно прорастает (рис. 10.18). Из вегетативной клетки образуется пыльцевая трубка, которая прорастает до зародышевого мешка. По этой трубке в зародышевый мешок проникают два спермия. Один из них сливается с яйцеклеткой, образуя диплоидный зародыш, другой соединяется с диплоидной клеткой, образуя триплоидную клетку, из которой развивается эндосперм. Такой процесс называется двойным оплодотворением. Он был открыт в 1898 г. С. Г. Навашиным.

После этого из завязи образуется плод, а из семязачатков — семя, в котором находится зародыш.

10.2.3.3. Семя

Семя — орган семенного размножения и расселения растений. Оно образуется из семязачатка (семяпочки) в завязи растений. Семя состоит из семенной кожуры, зародыша и запаса питательных веществ (эндосперма) (табл. 10.13, рис. 10.20).

10.2.3.4. Плод

Плод — орган покрытосеменных растений; представляет собой видоизменённый после оплодотворения цветок. Функции плодов — защита и распространение семян. В состав плода входят пестик и другие части цветка: разросшееся цветоложе, сросшиеся основания чашелистиков, лепестков и тычинок. Разросшиеся стенки завязи формируют околоплодник.

Виды плодов. По происхождению, в зависимости от того, из каких элементов цветка образовался плод, различают настоящие и ложные плоды. Настоящие плоды образуются из завязи (слива, томат). Ложные плоды образуются при участии цветоложа (шиповник), околоцветника (яблоко) и др.

Настоящие плоды делят на простые, сложные и соплодия. Простой плод развивается из цветка с одним пестиком (костянка, зерновка, боб), сложный — из цветка, имеющего несколько пестиков (земляника, малина), соплодие — из соцветия со сросшимися цветками (ананас, шелковица).

По консистенции околоплодника (количеству в нём воды) плоды делят на сухие и сочные, по количеству семян — на односемянные и многосемянные (табл. 10.14). Сухие многосемянные плоды имеют механизм вскрытия для разбрасывания семян (раскрывающиеся).

Распространение плодов и семян происходит с помощью ветра, воды, животных и человека, а также саморазбрасыванием (табл. 10.15).

 

10.3. ПОДЦАРСТВО ВЫСШИЕ РАСТЕНИЯ

10.3.1. СПОРОВЫЕ РАСТЕНИЯ

10.3.1.1. Отдел Моховидные

Моховидные произошли от водорослей и представляют собой эволюционный тупик. Отдел Моховидные включает около 25 тыс. видов. Обычные размеры мхов от 1 мм до 60 см. Одни мхи представляют собой таллом, другие имеют стебель и листья. Моховидные не имеют корней. Некоторые из них имеют одно- или многоклеточные ризоиды, которыми они прикрепляются к грунту и поглощают воду и минеральные вещества.

В жизненном цикле мхов гаплоидный гаметофит преобладает над диплоидным спорофитом (рис. 10.21). Это отличает их от остальных высших растений. Гаметофит развивается из гаплоидной споры. У разных видов мхов гаметофит может быть однополым (двудомным) или двуполым (однодомным). На гаметофите в органах полового размножения (гаметангиях) образуются подвижные сперматозоиды и неподвижные яйцеклетки. Мужские половые органы называются антеридии, женские — архегонии. Оплодотворение происходит в присутствии капельно-жидкой влаги. Из оплодотворённой зиготы развивается коробочка со спорами. Таким образом, взрослое растение мха — половое поколение (гаметофит), а коробочка со спорами — бесполое поколение (спорофит). Половое и бесполое поколения не разделены, а представляют одно растение. Также мхам свойственно и вегетативное размножение.

Наиболее крупный класс Моховидных — Листостебельные мхи. Различают зелёные мхи (кукушкин лён) и сфагновые (белые) мхи (сфагнум).

Зелёные мхи. Представитель — кукушкин лён, многолетнее растение высотой до 20 см. Широко распространён в еловых лесах, на болотах. Гаметофиты кукушкиного льна раздельнополы (двудомны), имеют прямостоячие неветвистые стебли с острыми листьями и ризоиды. На верхушках мужских и женских гаметофитов формируются антеридии и архегонии. Во время дождя или росы двужгутиковые сперматозоиды проникают к яйцеклеткам и сливаются с ними. После оплодотворения на женских растениях образуется диплоидный спорофит — коробочка на длинной ножке. Внутри коробочки формируется спорангий с гаплоидными спорами. Попадая в почву, спора прорастает в зелёную ветвящуюся нить -1 протонему, похожую на зелёную водоросль. Часть протонемы углубляется в почву, теряет хлорофилл и превращается в ризоиды; а из наземной части протонемы образуется стебель мха с листьями.

Сфагновые (белые) мхи. Представитель — сфагнум, играет важную роль в формировании и жизни болот. Сфагнум беловато-зелёного цвета, так как содержит большое количество воздухоносных клеток, имеет ветвистые стебельки, усаженные мелкими листьями, и не имеет ризоидов. Поглощение воды осуществляется всей поверхностью. Сфагновые мхи растут верхней частью побегов, а нижняя часть отмирает. В результате образуются залежи торфа. Процесс торфообразования происходит благодаря застойному переувлажнению, отсутствию кислорода и созданию мхами кислой среды.

Значение. Мхам принадлежит важная роль в природе: как накопители влаги они участвуют в регулировании водного баланса лесов и соседних территорий. Человеком торф используется в качестве топлива, как термоизолятор, в сельском хозяйстве в качестве удобрения, в химической промышленности для получения парафина, фенола, аммиака, уксусной кислоты, метанола, красителей и других веществ, в медицине при грязелечении, а также может быть использован как бактерицидный перевязочный материал, поскольку обладает антисептическим действием.

10.3.1.2. Отдел Плауновидные

Плауновидные, хвощевидные и папоротниковидные — древние группы высших растений. Они произошли от псилофитов (риниофитов), которые, в свою очередь, произошли от зелёных водорослей и первыми заселили сушу. Их расцвет пришёлся на каменноугольный период, после чего многие виды вымерли.

Плауновидные — это травянистые многолетние растения, встречающиеся в сыроватых хвойных и смешанных лесах. В настоящее время насчитывается около 1 тыс. видов. Они имеют стелющийся стебель с множеством веток, покрытых мелкими тёмно-зелёными листьями, укреплённый в почве с помощью придаточных корней. Верхушечные побеги заканчиваются спороносными колосками.

Из споры образуются мелкие заростки (2-3 мм), которые развиваются под землёй, через 15—20 лет на них образуются архегонии и антеридии. В них формируются многожгутиковые сперматозоиды, которые в присутствии воды оплодотворяют яйцеклетки, и из диплоидной зиготы развивается новое растение. Кроме того, плауновидные могут размножаться вегетативно (частями стебля).

Значение. Плауны растут очень медленно и подлежат охране. Животными не поедаются. Используются в медицине (некоторые содержат яд, сходный по действию с кураре, другие используются как присыпка, третьи — для лечения алкоголизма).

10.3.1.3. Отдел Хвощевидные

Хвощевидные — это многолетние травянистые растения, обитают на влажной кислой почве в сырых лесах, на болотах, влажных полях и лугах. В настоящее время насчитывается всего около 20 видов. Имеют хорошо развитое корневище с клубнями. Побеги состоят из члеников (междоузлий). В клеточных стенках накапливается кремнезём, который выполняет механическую и защитную роль. На верхушках побегов расположены спороносные колоски.

Весной на корневищах отрастают розоватые спороносные побеги со спороносными колосками, на которых образуются гаплоидные споры. Из них вырастают мужские и женские (более крупные) заростки. Оплодотворение осуществляется в жидкой среде. Из диплоидной зиготы развивается спорофит.

Значение. Хвощи несъедобны для животных, являются сорняками пастбищ и полей. Хвощ полевой применяют в медицине как мочегонное средство.

10.3.1.4. Отдел Папоротниковидные

Папоротники — многолетние, чаще травянистые растения лесов умеренной зоны (орляк), водоёмов (сальвиния), или древовидные, лиановые, эпифитные обитатели влажных тропиков. В настоящее время насчитывается около 10 тыс. видов.

Спорофит папоротников разделён на корень, стебель и лист (рис. 10.22). Корни придаточные, отходящие от корневища. Стебли развиты плохо, и листва по массе и размерам преобладает над стеблем. На нижней части листа развиваются спорангии.

Из споры развивается заросток — небольшая многоклеточная пластинка зелёного цвета и с ризоидами (самостоятельное растение). На заростке формируются антеридии (мужские половые органы) и архегонии (женские половые органы). Заростки одних видов двуполые, других — однополые. В антеридиях образуются сперматозоиды, в архегониях — яйцеклетки. Для их слияния необходимо наличие воды. После оплодотворения из зиготы развивается растение папоротника. Таким образом, заросток — половое поколение (гаметофит), а взрослое растение папоротника — бесполое поколение (спорофит). Половое и бесполое поколения разделены. Также папоротникам свойственно и вегетативное размножение (например, отделением корневища).

Значение. Роль древних папоротников, а также хвощей и плаунов состояла в образовании залежей каменного угля и насыщении атмосферы кислородом. Некоторые виды современных папоротников употребляются в пищу, используются в медицине (глистогонные средства) или как декоративные растения.

В таблице 10.16 представлена сравнительная характеристика отделов высших споровых растений.

10.3.2. Семенные растения

Рассмотренные выше споровые растения имеют два общих свойства:

  • 1) для осуществления полового процесса им необходима капельно-жидкая влага, что ограничивает их распространение;
  • 2) образующиеся споры мелкие, содержат мало питательных веществ и имеют слабую жизнеспособность. Это же относится к развитию из зиготы зародыша споровых растений.

Более прогрессивными с эволюционной точки зрения являются семенные растения. Им для оплодотворения не требуется вода, а семя (единица расселения семенных растений) содержит запас питательных веществ. Семя представляет собой маленький спорофит с корешком, почечкой и зародышевыми листьями — семядолями. В нём содержится запас питательных веществ, необходимый для первоначального этапа развития.

Взрослые семенные растения — спорофиты. Они образуют два типа спор: мужские (микроспоры) и женские (мегаспоры). Микроспоры продуцируются в мужских шишках (у голосеменных) или в пыльниках (у цветковых). Внутри пыльцевого зерна микроспора делится, и возникает мужской гаметофит, в котором образуются мужские гаметы. Мужские гаметы, формирующиеся внутри микроспоры, как правило, лишены жгутиков, не способны активно двигаться и называются спермиями. Мегаспоры образуются в семязачатках женских шишек или завязи. Единственная зрелая женская спора остаётся в семязачатке, здесь из неё развивается женский гаметофит (зародышевый мешок), где и образуется яйцеклетка. Таким образом, гаметофиты у семенных растений крайне редуцированы, весь цикл их развития протекает на спорофите (табл. 10.17).

К семенным растениям относятся голосеменные (размножаются семенами, но не образуют плодов) и покрытосеменные (семена заключены в плоды).

Сравнение высших споровых и семенных растений представлено в таблице 10.18.

10.3.2.1. Отдел Голосеменные

В отделе Голосеменные выделяют 6 классов: Семенные папоротники, Саговниковые, Беннеттитовые, Гнётовые, Гинкговые, Хвойные. Из них Семенные папоротники и Беннеттитовые полностью вымерли. Наиболее широко голосеменные были распространены в конце палеозойской и в мезозойскую эру. Ныне живущих голосеменных около 720 видов. Голосеменные представлены исключительно древесными формами: деревьями, кустарниками, лианами.

И в природе, и в жизни человека второе место после цветковых занимают хвойные. Их насчитывается около 560 видов. К ним относятся сосна, ель, лиственница, пихта, кедр, кипарис, можжевельник и др.

Строение. Хвойные имеют стержневую корневую систему. Часто содержат микоризу. Древесина на 90—95 % образована прочной проводящей тканью. Среди хвойных есть листопадные виды и вечнозелёные. У листопадных видов (лиственница) листья плоские и мягкие. У вечнозелёных (большинство хвойных) листья игольчатой формы и жёсткие. Устьица глубоко погружены в ткань листа, что уменьшает испарение воды. Хвоя содержит витамин С и выделяет фитонциды.

Размножение. Рассмотрим размножение хвойных на примере сосны (рис. 10.23).

Сосна — однодомное (обоеполое растение). На верхушках молодых побегов образуются красноватые женские шишки. Шишка состоит из оси, на которой расположены чешуи, а на каждой чешуе находятся два семязачатка. У основания молодых побегов сосны расположены группы зеленовато-жёлтых мужских шишек. В них формируется пыльца. Каждая пылинка снабжена двумя воздушными мешками. Созревшая пыльца с помощью ветра попадает на семязачатки женских шишек, после чего их чешуи плотно смыкаются и склеиваются смолой. Пылинка остаётся лежать внутри семязачатка до весны следующего года. От опыления до оплодотворения проходит 12—14 месяцев. Пыльца прорастает, из вегетативной клетки развивается пыльцевая трубка, а из генеративной — два спермия. Один сливается с яйцеклеткой, а второй погибает. Из зиготы развивается зародыш с запасом питательных веществ, из покрова семязачатка образуется кожура семени. После созревания семян чешуйки шитики расходятся и семена высыпаются.

Значение. Наиболее широко хвойные распространены в умеренной зоне Северного полушария, где они образуют тайгу. Человек использует хвойные как строительный материал, сырьё для целлюлозно-бумажной промышленности, топливо, как источник получения смол, эфирных масел, лекарственных средств и т.д. Древесина лиственницы отличается устойчивостью к гниению. Секвойя и мамонтово дерево — представители кипарисовых — обладают ценной древесиной («красное дерево»). Некоторые секвойи достигают высоты более 100 м и возраста 3-4 тыс. лет. Представители саговниковых используются человеком в пищу («хлебное дерево»).

10.3.2.2. Отдел Покрытосеменные (Цветковые)

Покрытосеменные — эволюционно наиболее молодая и самая многочисленная группа растений. Отдел включает около 250 тыс. видов. Покрытосеменные произрастают во всех климатических зонах, составляют основную массу растительного вещества биосферы и являются важнейшими производителями (продуцентами) органики на суше.

Доминирующая: роль цветковых обусловлена рядом прогрессивных особенностей:

  1. Появление цветка — органа, совмещающего функции бесполого размножения (образование спор) и полового (формирование семени).
  2. Образование в составе цветка завязи, заключающей в себе семязачатки (семяпочки) и предохраняющей их от неблагоприятных воздействий среды.
  3. Формирование из завязи плода: семена находятся внутри плода, и поэтому защищены (покрыты) околоплодником. Кроме того, плод позволяет использовать различных агентов для распространения семян (насекомых, птиц, летучих мышей, а также потоки воздуха и воды).
  4. Двойное оплодотворение, в результате которого образуются диплоидный зародыш и триплоидный (а не гаплоидный, как у голосеменных) эндосперм.
  5. Максимальная редукция гаметофита (рис. 10.24). Мужской гаметофит — пыльцевое зерно — состоит из двух клеток: вегетативной и генеративной, которая делится, образуя два спермия. Женский гаметофит состоит из восьми клеток зародышевого мешка, одна из которых становится яйцеклеткой.
  6. Размножение и семенами, и вегетативными органами.
  7. Усложнение и высокая степень дифференциации органов и тканей. В частности, наиболее совершенная проводящая система: ксилема представлена сосудами, а не трахеидами, во флоэме ситовидные трубки имеют членистое строение, появляются клетки-спутники.
  8. Быстрое протекание процессов роста и развития у однолетних форм.
  9. Большое разнообразие жизненных форм: деревья, кустарники, кустарнички, полукустарники, многолетние травы, однолетние травы и т.д.
  10. Могут образовывать сложные многоярусные сообщества благодаря большому разнообразию жизненных форм.

Значение. Практически все культурные растения принадлежат к этому отделу. Древесина покрытосеменных используется в промышленности, строительстве, производстве бумаги, мебели и т.д. Многие цветковые растения используются в медицине.

Систематика. Отдел Покрытосеменные (Цветковые) делят на два класса: Двудольные и Однодольные. Однодольные произошли от двудольных и являются менее многочисленными. Двудольные отличают от однодольных по ряду признаков (табл. 10.19). По каждому из признаков существует множество исключений. Единственный абсолютный признак — строение зародыша.

Классы Цветковых делят на семейства главным образом на основании строения цветка и плода. При этом используют формулу цветка (табл. 10.20).

В таблице 10.21 представлена сравнительная характеристика отделов высших растений.


 

ВСЕ РАЗДЕЛЫ СПРАВОЧНИКА

Материалы для подготовки к ЕГЭ. Онлайн-Справочник по биологии.
10. Царство РАСТЕНИЯ

Физика: Разбор сложных заданийФизика: Разбор сложных заданий

Физика ЕГЭ 2020. Подробный разбор заданий повышенного и высокого уровня сложности для отработки навыков выполнения самых сложных заданий ЕГЭ по физике, правильное решение которых практически гарантирует высокий результат на экзамене. Даётся методика решения задач высокого уровня сложности, обращается внимание на особенности оформления решений.

Часть 2 варианта ЕГЭ по физике содержит 8 заданий, объединённых общим видом деятельности — решением задач, из них 3 задания с кратким ответом и 5 заданий, для которых необходимо привести развёрнутый ответ. Среди этих пяти заданий есть одно качественное задание повышенного уровня сложности и 4 расчётных задания высокого уровня сложности.

Качественные задания направлены на проверку умения использовать понятия и законы физики для анализа различных процессов и явлений, а также умения решать задачи на применение одного-двух законов (формул) по какой-либо из тем школьного курса физики. Четыре последних задания части 2 (29-32) являются заданиями высокого уровня сложности и проверяют умение использовать законы и теории физики в изменённой или новой ситуации. Выполнение таких заданий требует применения знаний сразу из нескольких разделов физики.

 

Разбор самых сложных заданий:

Задание № 28. Механика, квантовая физика (качественная задача).

Задание № 29. Механика (расчётная задача)

Задание № 30. Молекулярная физика (расчётная задача).

Задание № 31. Электродинамика (расчётная задача)

Задание № 32. Электродинамика, квантовая физика (расчётная задача).

 

При подготовке к решению качественных задач №28 прежде всего следует обратить особое внимание на то, что эти задания оцениваются по шкале от 0 до 3 баллов. Учащемуся следует тщательно изучить требования к развёрнутому ответу.

Критерии оценивания выполнения задания № 28

Критерии

Баллы

Приведено полное решение, включающее следующие элементы: Приведено полное правильное решение, включающее правильный ответ и исчерпывающие верные рассуждения с прямым указанием наблюдаемых явлений и законов

3

Дан правильный ответ и приведено объяснение, но в решении имеются один или несколько из следующих недостатков. В объяснении не указано или не используется одно из физических явлений, свойств, определений или один из законов (формул), необходимых для полного верного объяснения. (Утверждение, лежащее в основе объяснения, не подкреплено соответствующим законом, свойством, явлением, определением и т.п.).
И (ИЛИ) Указаны все необходимые для объяснения явления и законы, закономерности, но в них содержится один логический недочёт.
И (ИЛИ) В решении имеются лишние записи, не входящие в решение (возможно, неверные), которые не отделены от решения (не зачёркнуты; не заключены в скобки, рамку и т.п.).
И (ИЛИ) В решении имеется неточность в указании на одно из физических явлений, свойств, определений, законов (формул), необходимых для полного верного объяснения

2

Представлено решение, соответствующее одному из следующих случаев. Дан правильный ответ на вопрос задания и приведено объяснение, но в нём не указаны два явления или физических закона, необходимых для полного верного объяснения.
ИЛИ Указаны все необходимые для объяснения явления и законы, закономерности, но имеющиеся рассуждения, направленные на получение ответа на вопрос задания, не доведены до конца.
ИЛИ Указаны все необходимые для объяснения явления и законы, закономерности, но имеющиеся рассуждения, приводящие к ответу, содержат ошибки.
ИЛИ Указаны не все необходимые для объяснения явления и законы, закономерности, но имеются верные рассуждения, направленные на решение задачи

1

Все случаи решения, которые не соответствуют вышеуказанным критериям выставления оценок в 1, 2, 3 балла

0

Максимальный балл

3

 

Надо внимательно вчитаться в условие задания и тщательно прочитать вопрос к нему.

Критерии оценивания выполнения заданий №№ 29-32

Задания 29 — 32 представляют собой расчётные задачи. В текстах заданий нет указаний на требования к полноте решения, эту функцию выполняет общая инструкция. В каждом варианте экзаменационной работы перед заданиями 29 — 32 приведена инструкция, которая в целом отражает требования к полному правильному решению расчётных задач.

При ручной проверке этих задач по критериям оценивания ФИПИ 3 балла выставляются в следующем случае: Приведено полное решение, включающее следующие элементы:

  1. записаны положения теории и физические законы, закономерности, применение которых необходимо для решения задачи выбранным способом (в данном случае перечисляются законы и формулы). В качестве исходных принимаются формулы, указанные в кодификаторе элементов содержания и требований к уровню подготовки выпускников общеобразовательных учреждений для проведения единого государственного экзамена по физике.;
  2. описаны все вновь вводимые в решение буквенные обозначения физических величин (за исключением обозначений констант, указанных в варианте КИМ, обозначений величин, используемых в условии задачи, и стандартных обозначений величин, используемых при написании физических законов). Стандартными считаются обозначения физических величин, принятые в кодификаторе элементов содержания и требований к уровню подготовки выпускников общеобразовательных учреждений для проведения единого государственного экзамена по физике;
  3. проведены необходимые математические преобразования и расчёты, приводящие к правильному числовому ответу (допускается решение «по частям» с промежуточными вычислениями);
  4. представлен правильный ответ с указанием единиц измерения искомой величины.

Очень важно обратить внимание на эти примечания:

Критерии

Баллы

Приведено полное решение, включающее следующие элементы: 1) записаны положения теории и физические законы, закономерности, применение которых необходимо для решения задачи выбранным способом; 2) описаны все вновь вводимые в решение буквенные обозначения физических величин (за исключением обозначений констант, указанных в варианте КИМ, обозначений величин, используемых в условии задачи, и стандартных обозначений величин, используемых при написании физических законов); 3) проведены необходимые математические преобразования и расчёты, приводящие к правильному числовому ответу (допускается решение «по частям» с промежуточными вычислениями); 4) представлен правильный ответ с указанием единиц измерения искомой величины

3

Правильно записаны все необходимые положения теории, физические законы, закономерности и проведены необходимые преобразования. Но имеются один или несколько из следующих недостатков. Записи, соответствующие пункту 2, представлены не в полном объёме или отсутствуют.
И (ИЛИ) В решении имеются лишние записи, не входящие в решение (возможно, неверные), которые не отделены от решения (не зачёркнуты, не заключены в скобки, рамку и т.п.).
И (ИЛИ) В необходимых математических преобразованиях или вычислениях допущены ошибки, и (или) в математических преобразованиях/вычислениях пропущены логически важные шаги.
И (ИЛИ) Отсутствует пункт 4, или в нём допущена ошибка (в том числе в записи единиц измерения величины)

2

Представлены записи, соответствующие одному из следующих случаев. Представлены только положения и формулы, выражающие физические законы, применение которых необходимо для решения задачи, без каких-либо преобразований с их использованием, направленных на решение задачи.
ИЛИ В решении отсутствует ОДНА из исходных формул, необходимая для решения данной задачи (или утверждение, лежащее в основе решения), но присутствуют логически верные преобразования с имеющимися формулами, направленные на решение задачи.
ИЛИ В ОДНОЙ из исходных формул, необходимых для решения данной задачи (или в утверждении, лежащем в основе решения), допущена ошибка, но присутствуют логически верные преобразования с имеющимися формулами, направленные на решение задачи

1

Все случаи решения, которые не соответствуют вышеуказанным критериям выставления оценок в 1, 2, 3 балла

0

Максимальный балл

3

 

 


Материалы для подготовки к ЕГЭ по физике. Подробный разбор заданий повышенного и высокого уровня сложности для отработки навыков выполнения самых сложных заданий ЕГЭ по физике, правильное решение которых практически гарантирует высокий результат на экзамене. Даётся методика решения задач высокого уровня сложности, обращается внимание на особенности оформления решений.

ЕГЭ Физика. Задание № 30 (с решениями)ЕГЭ Физика. Задание № 30 (с решениями)

Подготовка к ЕГЭ по физике. Задания высокого уровня сложности с развернутыми ответами. ЗАДАНИЕ № 30 с несколькими вариантами решения. Расчетная задача. Максимальная оценка 3 балла.

Задания 29 — 32 представляют собой расчётные задачи. В текстах заданий нет указаний на требования к полноте решения, эту функцию выполняет общая инструкция. В каждом варианте экзаменационной работы перед заданиями 29 — 32 приведена инструкция, которая в целом отражает требования к полному правильному решению расчётных задач.

 

ЕГЭ по физике. ЗАДАНИЕ № 30

Воздушный шар, оболочка которого имеет массу М = 145 кг и объём V = 230 м3, наполняется горячим воздухом при нормальном атмосферном давлении и температуре окружающего воздуха t0 = 0°С. Какую минимальную температуру t должен иметь воздух внутри оболочки, чтобы шар начал подниматься? Оболочка шара нерастяжима и имеет в нижней части небольшое отверстие.

Примерный ход рассуждений при решении задачи

Проведём физический анализ условия задачи. Для того чтобы шар начал подниматься, должно выполниться условие плавания тел — компенсация всех сил, действующих на тело. На шар действуют две силы: сила тяжести и выталкивающая сила Архимеда FA. Запишем условие начала подъёма шара: FAMg + mg, где М — масса оболочки, m — масса воздуха внутри оболочки.

Отсюда, используя связь массы тела и его плотности, можно получить: p0gV ≥ MG + pgV  =>  p0V ≥ М + pV, где р0 — плотность окружающего воздуха, р — плотность воздуха внутри оболочки, V — объём шара.

Как видно, здесь полностью выполнены условия пункта 2 критериев оценки.

Для воздуха внутри шара находим его плотность p = m/V = pμ/RT, где р — атмосферное давление, Т — температура воздуха внутри шара.

Найдём плотность воздуха в атмосфере: p0 = pμ/RT0, где Т0 — температура окружающего воздуха.

Запишем условие начала подъёма шара в виде

Откуда следует:

После подстановки числовых значений получим окончательный ответ:


 

Решение № 1 (на 2 балла)

Комментарий: Здесь приведены все исходные формулы, получен ответ в общем виде, не проведён численный расчёт. Эксперты оценили работу в 2 балла.


Решение № 2 (на 1 балл)

Комментарий: Здесь эксперты выставили достаточно спорный 1 балл. Условие подъёма шара записано неверно, и, следовательно, больше не о чем говорить.


Решение № 3 (на 1 балл)

Комментарий: В данном решении достаточно грамотно (в векторном виде) записаны все необходимые уравнения, но учащийся не учитывает массу оболочки шара и неверно записывает выражение для плотности воздуха в шаре (через массу оболочки и объём шара). Следовательно, одно из исходных уравнений ошибочно, работа оценивается 1 баллом.


Решение № 4 (на 0 баллов)

Комментарий: Отсутствуют два из трёх исходных уравнений.

 


Подготовка к ЕГЭ по физике. Задания высокого уровня сложности с развернутыми ответами. ЗАДАНИЕ № 30 с несколькими вариантами решения. Расчетная задача. Максимальная оценка 3 балла.

ЕГЭ Физика. Задание № 29 (с решениями)ЕГЭ Физика. Задание № 29 (с решениями)

Подготовка к ЕГЭ по физике. Задания высокого уровня сложности с развернутыми ответами. ЗАДАНИЕ № 29 (с решениями). Расчетная задача. Максимальная оценка 3 балла.

Задания 29 — 32 представляют собой расчётные задачи. В текстах заданий нет указаний на требования к полноте решения, эту функцию выполняет общая инструкция. В каждом варианте экзаменационной работы перед заданиями 29 — 32 приведена инструкция, которая в целом отражает требования к полному правильному решению расчётных задач.

 

ЕГЭ по физике. ЗАДАНИЕ № 29

К одному концу лёгкой пружины жёсткостью k = 100 Н/м прикреплён массивный груз, лежащий на горизонтальной плоскости, другой конец пружины закреплён неподвижно. Коэффициент трения груза по плоскости μ = 0,2. Груз смещают по горизонтали, растягивая пружину, затем отпускают с начальной скоростью, равной нулю. Груз движется в одном направлении и затем останавливается в положении, в котором пружина уже сжата. Максимальное растяжение пружины, при котором груз движется таким образом, равно d = 15 см. Найдите массу m груза.

Один из вариантов решения

Сделаем поясняющий чертёж.

В начальный момент времени (см. рис. 16а) пружина была растянута на величину d, следовательно, её потенциальная энергия была равна E1 = kd2/2   (k — коэффициент жёсткости пружины). Когда груз отпустили, пружина начала сжиматься, а сам груз — двигаться в сторону закреплённого конца пружины. В некоторый момент движение груза прекратилось, пружина при этом сжалась на величину х (см. рис. 16б). Соответственно в момент остановки груза потенциальная энергия пружины была равна Е2 = kx2/2.

Изменение механической энергии системы равно работе сил трения.
А = –FтрS = –Fтр • (d + х) = – μN • (d + x).
Здесь S — пройденный грузом путь, μ — коэффициент трения, N — сила реакции опоры.

Кинетические энергии груза и в начальном положении, и в конечном равны нулю, следовательно:

Рассмотрим силы, действующие на груз в момент остановки — силу трения, силу упругости со стороны пружины, силу тяжести и силу реакции опоры (см. рис. 17). Груз покоится, значит, равнодействующая этих сил равна нулю. Запишем проекции сил на оси Ох и Оу:

Выразим из этих двух уравнений величину сжатия пружины х: х = μN/k = μmg/k

Отсюда k/2 • (d – μmg/k) = μN. Выразим массу тела: m = kd/2μg = 2,5 (кг).

Ответ: m = 2,5 кг.

Решение № 1 (на 3 балла)

Комментарий: Здесь в полном соответствии с пунктом 2 в критериях оценки указана на рисунке вновь введённая автором решения величина d1.


Решение № 2 (на 2 балла)

Комментарий: К недостаткам работы следует отнести отсутствие рисунка с указанием вновь вводимых обозначений. Кроме того, замечены ошибки в математических преобразованиях; однако недостатки решения, каждый из которых приводит к снижению оценки на 1 балл, не суммируются. Оценка 2 балла.


Решение № 3 (на 2 балла)

Комментарий: Такие же замечания, как и в предыдущей работе, и та же оценка.


Решение № 4 (на 2 балла)

Комментарий: Здесь получен правильный ответ, т.к. как ошибки в расчётах сил сопротивления компенсировались ошибками в математических преобразованиях. Оценка 2 балла.


Решение № 5 (на 0 баллов)

Комментарий: Оценка 0 баллов, т.к. неверно записаны исходные формулы.

 

Образцы заданий № 29 (с решениями)

Часть 1. Кинематика

1.1. На рисунке 18 представлена зависимость ускорения материальной точки от времени. Начальная скорость точки равна 0. В какой момент времени точка изменит направление движения?

Смотреть решение и ответ

 

1.2. Тело брошено под углом α к горизонту с начальной скоростью υ0. При этом на тело действует попутный горизонтальный ветер, сообщая ему постоянное ускорение а. Найдите время полёта, наибольшую высоту и наибольшую дальность полёта.

Смотреть решение и ответ

 

1.3. Тело брошено с высоты 20 м. Какой путь пройдёт тело за последние 0,1 с своего движения? Начальная скорость тела равна нулю.

Смотреть решение и ответ

 

1.4. Из некоторой точки одновременно бросают два тела с одинаковой скоростью 25 м/с: одно — вертикально верх, другое — вертикально вниз. На каком расстоянии друг от друга будут эти тела через 2 с?

Смотреть решение и ответ

 

1.5. Из поднимающегося вертикально вверх вертолёта со скоростью υ на высоте Н вылетает тело. Через сколько времени оно упадёт на Землю? Какой будет скорость у тела? Сопротивления воздуха нет.

Смотреть решение и ответ

 

1.6. Жонглёр бросает вертикально вверх шарики с одинаковой скоростью через равные промежутки времени. При этом пятый шарик жонглёр бросает в тот момент, когда первый шарик возвращается в точку бросания. Найдите максимальное расстояние Smax между первым и вторым шариками, если начальная скорость шариков υ0 = 5 м/с. Ускорение свободного падения принять равным g = 10 м/с2. Сопротивлением воздуха пренебречь.

Смотреть решение и ответ

 

Часть 2. Динамика

2.1. Диск вращается в горизонтальной плоскости с угловой скоростью 3 рад/с. На расстоянии 30 см от центра диска лежит небольшое тело. При каком минимальном значении коэффициента трения тело будет удерживаться на диске?

Смотреть решение и ответ

 

2.2. С наклонной плоскости длиной 4 м и углом наклона 30° соскальзывает тело массой 2 кг, после чего проходит некоторое расстояние по горизонтали. Коэффициент трения на всём пути 0,05. Найдите расстояние, пройденное телом по горизонтали.

Смотреть решение и ответ

 

2.3. По рельсам фуникулёра, проложенным под углом 30° к горизонту, спускается вагон массой 2 т. Скорость вагона на всём пути рана 10 м/с, время торможения перед остановкой 5 с. Найдите силу натяжения каната при торможении. Коэффициент трения между колёсами и рельсами 0,1.

Смотреть решение и ответ

 

2.4. Лётчик массой 70 кг совершает мёртвую петлю в вертикальной плоскости с включённым двигателем, поддерживая постоянную по модулю скорость. Насколько вес лётчика в верхней точке траектории меньше, чем в нижней?

Смотреть решение и ответ

 

2.5. Катер массой 1 т плывёт под действием трёх сил: силы тяги двигателя 1,5 кН, силы ветра 1 кН и силы сопротивления 0,5 кН, причём сила тяги и сила ветра перпендикулярны друг другу. Каково ускорение катера?

Смотреть решение и ответ

 

2.6. На расстоянии r = 25 см от центра шероховатого диска покоится тело. Диск начали раскручивать, увеличивая его угловую скорость вращения. Чему равен коэффициент трения тела о диск, если тело начинает скользить по диску при угловой скорости ω = 4,5 рад/с?

Смотреть решение и ответ

 


Подготовка к ЕГЭ по физике. Задания высокого уровня сложности с развернутыми ответами. ЗАДАНИЕ № 29 (с решениями). Задания 29 — 32 представляют собой расчётные задачи. В текстах заданий нет указаний на требования к полноте решения, эту функцию выполняет общая инструкция. В каждом варианте экзаменационной работы перед заданиями 29 — 32 приведена инструкция, которая в целом отражает требования к полному правильному решению расчётных задач.